Thermische Ausdehnung
Thermische Anomalie des Wassers

LD Handblätter Physik

P2.1.3.1

Untersuchung des Dichtemaximums von Wasser

Versuchsziele

- Messung der thermischen Ausdehnung von Wasser im Temperaturbereich zwischen 0 °C und 15 °C.
- Nachweis der thermischen Anomalie und Bestimmung des Dichtemaximums.

Grundlagen

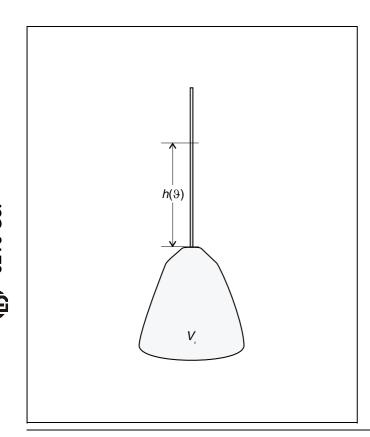
Eine in ihren Folgen wichtige Anomalie zeigt Wasser bei der Erwärmung von 0 °C an: Bis zu einer Temperatur von ca. 4 °C hat es einen negativen Ausdehnungskoeffizienten, d.h. es zieht sich bei Erwärmung zusammen. Nach einem Nulldurchgang bei 4 °C nimmt der Ausdehnungskoeffizient positive Werte an. Da die Dichte dem Kehrwert des Volumens einer Stoffmenge entspricht, hat Wasser also bei 4 °C ein Dichtemaximum.

Im Versuch wird das Dichtemaximum von Wasser durch Messung der Ausdehnung in einem Gefäß mit Steigrohr nachgewiesen. Die komplette Anordnung wird von der Raumtempe-

ratur ausgehend in einem Eiswasserbad unter ständigem Umrühren auf etwa 1 °C abgekühlt oder nach Abkühlen in einem Eisschrank durch die Umgebungstemperatur langsam erwärmt. Man misst die Steighöhe h in Abhängigkeit von der Wassertemperatur ϑ und kann daraus das Gesamtvolumen des Wassers in Gefäß und Steigrohr berechnen:

$$V(\vartheta) = V_0 + \pi \cdot \frac{d^2}{4} \cdot h(\vartheta) \tag{1}$$

d = 1,7 mm: Innendurchmesser des Steigrohres V_0 = 310 cm³: Wasservolumen im Gefäß


Für die Dichte des Wassers gilt daher

$$\frac{\rho \left(\vartheta\right)}{\rho \left(0\,^{\circ}\mathrm{C}\right)} = \frac{V_{0} + \pi \cdot \frac{d^{2}}{4} \cdot h \left(0\,^{\circ}\mathrm{C}\right)}{V_{0} + \pi \cdot \frac{d^{2}}{4} \cdot h \left(\vartheta\right)} \tag{II),}$$

wenn man vernachlässigt, dass sich das Glasgefäß (Duran) bei Erwärmung ebenfalls ausdehnt. Wird diese Ausdehnung berücksichtigt, ändert sich (II) zu

$$\frac{\rho\left(\vartheta\right)}{\rho\left(0\ ^{\circ}C\right)} = \frac{V_{0} + \pi \cdot \frac{d^{2}}{4} \cdot h\left(0\ ^{\circ}C\right)}{V_{0} \cdot \left(1 + 3 \cdot \alpha \cdot \vartheta\right) + \pi \cdot \frac{d^{2}}{4} \cdot h\left(\vartheta\right)} \tag{III)}.$$

 $\alpha=3,\!25\,10^{-6}~\text{K}^{-1}$: linearer Ausdehnungskoeffizient von Duran Dabei bleibt die thermische Ausdehnung des Steigrohres weiterhin unberücksichtigt.

Bestimmung der thermischen Ausdehnung von Wasser in einem Gefäß mit Steigrohr aus der Höhenänderung im Steigrohr.

Geräte

Gerät zur Demonstration der Wasseranomalie Magnetrührer, ohne Heizplatte	667 505 666 845
1 Thermometer, $-10~^{\circ}\text{C}$ bis +40 $^{\circ}\text{C}$ oder	382 36
1 Digitales Temperaturmessgerät	666 190
1 Temperaturfühler NiCr-Ni	666 193
Tromporatarior Mor M	000 100
1 Glaswanne $300 \times 200 \times 150 \text{ mm}^3 \dots$	664 195
1 Trichter	665 008 307 66 301 10 666 555 301 01 300 42 300 02
zusätzlich erforderlich:	

destilliertes Wasser

Eisschrank

oder

500 g zerkleinertes Eis, 50 g Kochsalz

Aufbau

zunächst:

- Rührstäbchen durch Gewindetubus (a) in das Gerät zur Demonstration der Wasseranomalie bringen.
- Thermometer in Schraubverschluss mit 8-mm-Bohrung schieben

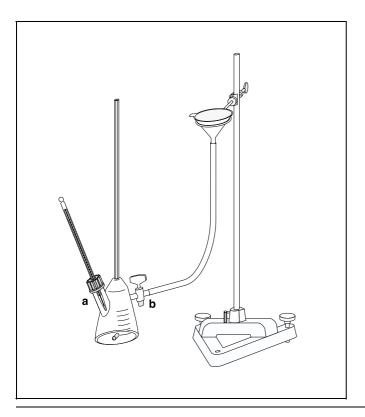
oder

- Temperaturfühler NiCr-Ni in Schraubverschluss mit 1,5mm-Bohrung schieben.
- Schraubverschluss auf Gewindetubus festdrehen.

Einfüllen von destilliertem Wasser:

- Trichter mit Füllrohr (b) verbinden.
- Destilliertes Wasser in Trichter einfüllen, Glashahn öffnen und Wasser kontinuierlich nachgießen, so dass der Trichter während des Einfüllvorgangs stets gefüllt ist.
- Luftblasen durch Schwenken des Gerätes entfernen.

Wenn das Wasser den oberen Rand der Steigrohres erreicht:


- Glashahn schließen.
- Restliches Wasser aus Trichter und Gummischlauch gießen und Gummischlauch abziehen.

Variante 1: Abkühlen des Wassers für Messung mit steigender Temperatur:

- Thermostat des Eisschrank so einstellen, dass die Temperatur im Flaschenfach ca. 0,5-1 °C beträgt (durch Probieren ermitteln, das Wasser soll nicht gefrieren).
- Gerät zur Demonstration der Wasseranomalie mit destilliertem Wasser füllen und über Nacht im Flaschenfach des Eisschranks abkühlen.

Variante 2: Vorbereitung einer Eismischung für Messung bei sinkender Temperatur:

Eismischung aus 450 g zerkleinertem Eis und 40 g Kochsalz in Glaswanne ansetzen und gründlich durchmischen.

Einfüllen von destilliertem Wasser Fig. 1 hier als Beispiel dargestellt: Temperaturmessung mit Thermometer

Durchführung

Variante 1: Messung bei steigender Temperatur:

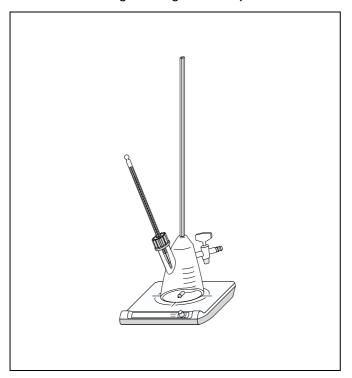


Fig. 2 Versuchsaufbau zur Messung der thermischen Ausdehnung von Wasser bei steigender Temperatur hier als Beispiel dargestellt:

Temperaturmessung mit Thermometer

- Gerät zur Demonstration der Wasseranomalie aus dem Eisschrank nehmen und auf den Magnetrührer stellen.
- Magnetrührer sofort einschalten und mittlere Drehzahl einstellen.
- Ggf. digitales Temperaturmessgerät einschalten und Temperaturfühler NiCr-Ni anschließen.
- Wasserstand h im Steigrohr in Abhängigkeit von der Temperatur ϑ ablesen und notieren.

Variante 2: Messung bei sinkender Temperatur:

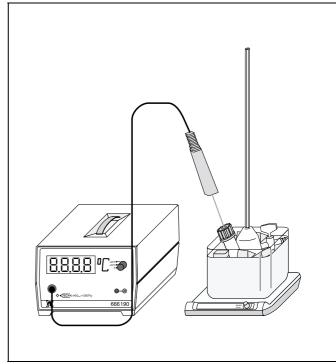


Fig. 3 Versuchsaufbau zur Messung der thermischen Ausdehnung von Wasser bei sinkender Temperatur hier als Beispiel dargestellt:

Temperaturmessung mit Temperaturfühler NiCr-Ni

- Gerät zur Demonstration der Wasseranomalie in Glaswanne mit Eismischung stellen und Glaswanne sofort auf den Magnetrührer stellen.
- Magnetrührer sofort einschalten und mittlere Drehzahl einstellen.
- Ggf. digitales Temperaturmessgerät einschalten und Temperaturfühler NiCr-Ni anschließen.
- Wasserstand h im Steigrohr in Abhängigkeit von der Temperatur ϑ ablesen und notieren.

Sobald die Temperatur unter 0,5 °C sinkt:

Gerät zur Demonstration der Wasseranomalie aus der Eismischung nehmen (das Wasser soll nicht gefrieren).

Messbeispiel

Tab. 1: Steighöhe h des Wassers in Abhängigkeit von der Temperatur ϑ , aufgenommen bei steigender Temperatur

θ	<u>h</u> mm	θ	<u>h</u> mm	θ	<u>h</u> mm
0,6 °C	24,6	4,0 °C	23,1	7,4 °C	24,6
0,8 °C	24,5	4,2 °C	23,2	7,6 °C	24,7
1,0 °C	24,4	4,4 °C	23,2	7,8 °C	24,8
1,2 °C	24,2	4,6 °C	23,2	8,0 °C	25,0
1,4 °C	24,0	4,8 °C	23,3	8,5 °C	25,6
1,6 °C	23,9	5,0 °C	23,4	9,0 °C	26,0
1,8 °C	23,8	5,2 °C	23,4	9,5 °C	26,6
2,0 °C	23,7	5,4 °C	23,5	10,0 °C	27,0
2,2 °C	23,6	5,6 °C	23,5	10,5 °C	28,2
2,4 °C	23,5	5,8 °C	23,6	11,0 °C	28,9
2,6 °C	23,4	6,0 °C	23,8	11,5 °C	29,8
2,8 °C	23,3	6,2 °C	23,8	12,0 °C	30,6
3,0 °C	23,2	6,4 °C	23,9	12,5 °C	31,5
3,2 °C	23,2	6,6 °C	24,0	13,0 °C	32,7
3,4 °C	23,1	6,8 °C	24,1	13,5 °C	33,2
3,6 °C	23,1	7,0 °C	24,3	14,0 °C	34,7
3,8 °C	23,1	7,2 °C	24,5		

Auswertung

In Fig. 4 sind die Messwerte der Tab. 1 graphisch dargestellt. Für die Steighöhe h bei 0 °C entnimmt man den extrapolierten Wert 25,07 cm. Damit kann gemäß (III) die relative Dichte berechnet werden.

Fig. 5 zeigt eine graphische Darstellung in Abhängigkeit von der Temperatur. Das Maximum der Werte liegt bei ϑ = 3,6 °C und beträgt 1,00013.

Literaturangabe:

Dichtemaximum von Wasser: $\rho(3.89 \,^{\circ}\text{C}) = 0.999973 \,\text{g cm}^{-3}$

$$\frac{\rho (3.89 \, ^{\circ}\text{C})}{\rho (0 \, ^{\circ}\text{C})} = 1,000105$$

Ergebnis

Das Wasservolumen wird bei einer Temperaturerhöhung zwischen 0 °C und etwa 4 °C kleiner und dehnt sich erst bei höheren Temperaturen aus.

Die Dichte von Wasser erreicht bei etwa 4 $^{\circ}$ C ihren größten Wert

Fig. 4 Steighöhe *h* als Maß für die thermische Ausdehnung von Wasser in Abhängigkeit von der Temperatur

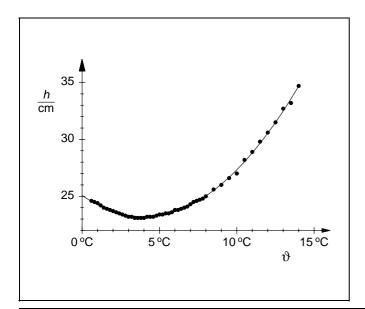
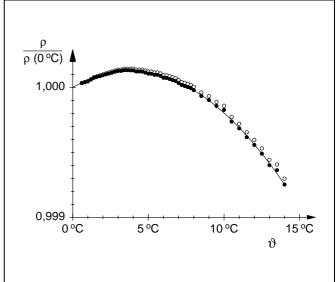



Fig. 5 relative Dichte von Wasser in Abhängigkeit von der Temperatur

○: berechnet gemäß(II), ●: berechnet gemäß (III)

